8. Homework Assignment

Dynamical Systems II

Bernold Fiedler, Hannes Stuke
http://dynamics.mi.fu-berlin.de/lectures/
due date: Thursday, December 11, 2014

Problem 1: Which of the following "paper-clip" maps gives rise to shift dynamics? (You can assume, that the maps are affine linear, in the regions of intersection.)

Problem 2: Consider the Hénon map

$$x_{j+1} = 1 - \alpha x_j^2 + y_j,$$

 $y_{j+1} = \beta x_j.$

Find a horseshoe for $1 \ll \alpha$ and $0 < \beta \ll 1$.

For the following two problems consider the situation of a C^0 -horseshoe. This means, that the iteration Φ on $\bigcup_{a \in A} V_a$ in the square Q satisfies the assumptions of the theorem about the C^0 -horseshoe. Thus, there exists a homeomorphism τ conjugating the shift $\sigma: S \to S$ to $\Phi: I \to I$, on the maximal ϕ - invariant subset $I:=\tau(S) \subset \bigcup_{a \in A} V_a$. Let the horizontal and vertical Lipschitz-curves U(s) and V(s) be defined as in class, that is

$$U(s) := \left\{ q \in Q \mid \Phi^{-k}(q) \in V_{s_k} \ \forall k \ge 1 \right\},$$

$$V(s) := \left\{ q \in Q \mid \Phi^{-k}(q) \in V_{s_k} \ \forall k \le 0 \right\},$$

for any sequence $s = (s_k)_{k \in \mathbb{Z}} \in S$.

Problem 3: Define the unstable and stable sets of points $p = \tau(s) \in I$ as follows:

$$W^{\mathrm{u}}(p) := \left\{ \begin{array}{l} q \in Q & \Phi^{k}(q) \in \bigcup_{a \in A} V_{a} \ \forall k \leq -1, \quad \lim_{k \to -\infty} \mathrm{dist} \left(\Phi^{k}(p), \Phi^{k}(q) \right) = 0 \\ \end{array} \right\}$$

$$W^{\mathrm{s}}(p) := \left\{ \begin{array}{l} q \in Q & \Phi^{k}(q) \in \bigcup_{a \in A} V_{a} \ \forall k \geq 0, \quad \lim_{k \to \infty} \mathrm{dist} \left(\Phi^{k}(p), \Phi^{k}(q) \right) = 0 \\ \end{array} \right\}.$$

Prove or disprove:

- (i) $U(s) \subset W^{\mathrm{u}}(p)$ and $V(s) \subset W^{\mathrm{s}}(p)$;
- (ii) $W^{\mathrm{u}}(p) \subset U(s)$ and $W^{\mathrm{s}}(p) \subset V(s)$;

Problem 4: For every $s \in S$ is the curve V(s) a graph over the vertical axis. Thus there is a function $v_s(y)$ such that $V(s) := \{(v_s(y), y), y \in [0, 1]\}$. Prove or disprove, that the curves V(s) depend continuously on their footpoint $(v_s(0), 0)$. That is to say for all $p = \tau(s) \in I$ and all $\epsilon > 0$ exists a $\delta > 0$ such that for all $\tilde{p} = \tau(\tilde{s}) \in I$ with $|v_s(0) - v_{\tilde{s}}(0)| < \delta$ it holds, that $\max_{0 \le y \le 1} |(v_s(y) - v_{\tilde{s}}(y))| < \epsilon$.